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LS-DYNA ALE has been widely used to simulating moving fluids interacting with structures.  Unlike 

CFD, the focus is rather on the structure response under dynamic loading from fluids, than the 

fluids’ motion.  Fluids are agitated by a high pressure gradient; and then hit the structure, carrying 

a large momentum.  The key in successfully capturing the physics lies in the fluid-structure 

interaction algorithm.  It needs to accurately predict the peak of pressure loading during the 

impact, which is characterized as a momentum transfer process.  This request could only be 

fulfilled by a transient analysis with a penalty-based coupling between fluids and structure. 

In 2015, LSTC introduced a new structured ALE (S-ALE) solver option dedicated to solve the subset 

of ALE problems where a structured mesh is appropriate. As expected, recognizing the logical 

regularity of the mesh brought a reduced simulation time for the case of identical structured and 

unstructured mesh definitions.  It also comes with a cleaner, conceptually simpler way of model 

setup.  This article gives a brief description of the S-ALE model setup. 

PART is the problem. 

This section is to give a background information on the introduction of a new keyword 

*ALE_STRUCTURED_MULTI-MATERIAL_GROUP.  For new users never used previous ALE/S-ALE 

setup, please skip this section as it is irrelevant and could be confusing without knowing some 

history of changes in ALE setups.  

“Part” definition is conveniently used in Finite element models to link the material definition and 

mesh of a Lagrange structure.  A typically “PART” definition contains three things: SECTION, which 

is the integration rule; MAT+EOS, the material property; and mesh, linked by the PARTID and 

listed under *ELEMENT keyword.  In a Lagrange simulation, “PART” has dual meanings – it refers 

to both the mesh and the material.   

In the world of ALE, it is a little more complicated.  As we are dealing with fluids, our point of 

view is rather Eulerian, not Lagrangian.  This means the mesh and materials are not; and should 

not be bundled together.  Mesh is no longer a spatial representation of material; and its boundary 

surface is no long material interface.  Rather, the mesh, in an ALE simulation, is simply a spatial 

domain, to provide room for the fluids to occupy and flow.  They are multiple fluids inside this 

mesh and associate this mesh with any one material property does not make any sense. 

The general ALE solver borrowed “PART” definition.  This caused quite some confusion in our 

users, even the most experienced users.  It is not surprising at all, as sometimes “PART” refers 

the mesh; other times the material; and on several occasions, it refers to both mesh and 

materials. 

When constructing the Structured ALE keywords, the author tried to separate this dual meanings 

“PART” definition into two distinguished definitions – “Mesh Part” and “Material Part”.  It helped 



to some extent, but still considerable confusion still exists.  As S-ALE solver is gradually picking up 

more usage, it becomes mandate to address this issue once and for all.  Streamlining the S-ALE 

setup would save a lot of users’ effort, especially for our new users not familiar with LS-DYNA 

keyword setups. 

A new keyword, *ALE_STRUCTURED_MULTI-MATERIAL_GROUP was introduced recently.  It is 

available in the latest beta version executable and will be in the next R12.1 release.  This keyword 

no longer uses “PART” to link the material properties and hence eliminates the concept of 

“Material Part”.  The author believes it would prevent most common user setup mistakes. 

Three step setup 

We follow a straight-forward three step setup.  First, mesh; secondly, material properties of 

fluids; thirdly, filling the mesh with fluids.  In this section, we describe the three keywords doing 

these three steps.  

1. Mesh generation: *ALE_STRUCTURED_MESH; *ALE_STRUCTURED_MESH_CONTROL_POINTS 

In S-ALE, mesh is always rectangular. Obviously an automatically generated mesh would get rid 

of lots of unnecessary hassles in the model building and execution.  So that was the route we 

took.  To determine the mesh layout in the space, we need the following information:  

a. The mesh spacing along three axes (LCIDX,LCIDY,LCIDZ). 

b. The origin (NID0), and local coordinate system (LCSID).    

Other fields are for identification purpose only and are self-explanatory.  MSHID stands for mesh 

ID; DPID Part ID; NBID and EBID are the IDs of first S-ALE mesh node and element, respectively.  

TDEATH is to the “death time” for S-ALE mesh.  It is to turn off the S-ALE calculation once the 

most of fluid loading is applied; and keep the Lagrange model running as the structure 

deformation is not fully developed yet.   

*ALE_STRUCTURED_MESH 

MSHID DPID NBID EBID    TDEATH 

CPIDX CPIDY CPIDZ NID0 LCSID    

 

The LCIDX, LCIDY and LCIDZ are IDs of  *ALE_STRUCTURED_MESH_CONTROL_POINTS cards.  Each 

card specifies the mesh spacing along one axis. 

*ALE_STRUCTURED_MESH_CONTROL_POINTS 

CPID        

N1 X1 RATIO1   

… … …   

Nn Xn RATIOn   

 



The idea of the “_CONTROL_POINTS” card is simple. Let us forget about the “RATIO” field which 

is for progressive mesh spacing.  This card contains some number of (N,X) pairs.  And each (N,X) 

pair means “the Nth node’s coordinate is X”.  Between any two consecutive (N,X) pairs mesh is 

evenly distributed.  Take the simplest case,  say 10 elements between [0,1].  A simple two pairs 

setup of (1,0.) and (11,1.) is sufficient.  To another extreme, say we really want some insane 

irregular mesh.  We could make 11 pairs of (N,X) like (1,0.), (2,0.07), (3,0.13), (4,0.2), (5,0.26), 

(6,0.37), (7,0.47), (8,0.53), (9,0.79), (10,0.8), and finally (11,1.). 

The progressive mesh spacing is something worth a separate article by itself and hence skipped 

in this introductory paper.  It is powerful but conceptually not so user-friendly.  Efforts are being 

continuously made to improve this part. Please stay tuned for the updates. 

2. Material definitions: *ALE_STRUCTURED_MULTI-MATERIAL_GROUP 

S-ALE mesh is simply a spatial domain in which fluids flow.  In order to let the code know what 

and how many fluids there are, we need to provide material properties of each fluid and list them 

all under the card *ALE_STRUCTURED_MULTI-MATERIAL_GROUP.  Please note, AMMG stands 

for ALE multi-material group, a rather alternative and maybe confusing name for “ALE fluid”.  In 

this paper we are going to use AMMG and fluid interchangeably.   

*ALE_STRUCTURED_MULTI-MATERIAL_GROUP 

AMMGNM1 MID1 EOSID1     PREF1 

… ... …     … 

AMMGNMn MIDn EOSIDn     PREFn 

 

“AMMGNM” is a name one gives to a AMMG (ALE Multi-Material Group), aka ALE fluid.  It is used 

in other cards, for example, *SET_MULTI-MATERIAL_GROUP_LIST to refer to that AMMG.  “MID” 

and “EOSID” are the material ID and EOS ID, respectively.   

“PREF” is to describe the reference pressure or “base pressure” of that fluid.   This might be 

somewhat new to our typical users from solids background.  Pressure of a solid material, if not 

preloaded, always starts from zero.  In  such case, its reference pressure or base pressure, is zero.  

But most fluids have non-zero reference pressure.  For example, air has a base pressure of 101325 

Pa (1 bar atmospheric pressure).   Traditionally this reference pressure is prescribed using the 

field “PREF” in *CONTROL_ALE card.  The new *ALE_STRUCTURED_MULTI-MATERIAL_GROUP  

has a design to allow each AMMG to have its own reference pressure.  The author believes this 

added flexibility could be proven very useful in certain applications. 

3. Volume Filling: *ALE_STRUCTURED_MESH_VOLUME_FILLING 

Now we have a rectilinear S-ALE mesh, which is our calculation domain. And we have several 

fluids which resides in this domain.  Before carrying out our simulation, there is still one critical 

information missing.  That is: how are those fluids occupying the domain?  This information is 

given as the form of volume fraction per element.  Basically we need to assign the volume fraction 



for each AMMG (ALE fluid) for each element.  Say one element is fully occupied by AMMG 

“water”, then the volume fraction of that element is (1, 0, 0), assuming the ALE materials are 

(“water”, “air”, “vacuum”).  Similarly (0.6,0.3,0.1) if “water” 60%, air 30% and vacuum 10%.  For 

each element, the code needs to know the volume fraction of all ALE fluids.   

The first way is to explicitly list volume fractions for each element.  This could be done through a 

keyword card called “*INITIAL_VOLUME_FRACTION”.  This approach is seldomly used as first, it 

is tedious and secondly, too much burden on users. 

The much easier solution is to automatically generate the volume fraction information based on 

certain user supplied geometries.  These geometries could be simple shapes like sphere, plane, 

box, cylinder.  Or it could be user-defined complex shape like structure surfaces.   With certain 

geometric shape defined,  users could then fill the inside or outside of that shape with certain 

ALE fluid.  The volume fractions are internally calculated, stored and then used in the subsequent 

simulation to reconstruct the fluid interface. 

This is done by using the keyword “*ALE_STRUCTURED_MESH_VOLUME_FILLING”.  The “volume 

filling” process typically is done through multiple “tasks”, each task by a separate keyword. 

*ALE_STRUCTURED_ MESH_VOLUME_FILLING 

MSHID  AMMGTO  NSAMPLE   VID 

GEOM IN/OUT E1 E2 E3 E4   

 

MSHID is the S-ALE mesh ID, defined in *ALE_STRUCTURED_MESH card. And AMMGTO is the 

name of ALE fluid to be filled, defined in *ALE_STRCUTURED_MULTI-MATERIAL_GROUP.  VID is 

to prescribe the initial velocity of that fluid, if any.  And NSAMPLE is default to 3 which means 

that one ALE cell is divided into 7x7x7 (7=2*3+1) sub-cells and each sub-cell is checked to see if 

it is inside/outside.  

It supports 5 basic geometries: Plane, Cylinder, Ellipsoid, Box with indices and Box with 

coordinates.  And E1-E4 are used to provide information of these geometries.  For complicated 

geometries, we need users to provide us with a segment set (or something we could internally 

convert to a segment set).  The assumption is that all segment normals are consistent; and those 

normals point to the “inside”.  For convenience, we provide a “IN/OUT” flag for an easier flip. 

A Simple Example 

Now let us use a simple example to illustrate this 3-step process.  It is to model a long rod 

projectile impacting an oblique steel plate (Fugelso & Taylor 1978).  The dimensions were from 

ARL-TR-2173 (Schraml & Kimsey 2000) and material properties from “Numerical Simulation of 

High-Velocity oblique Impacts of Yawed Long Rod Projectile Against Thin-Plate” (Yo-Han Yoo 

2002). 



Below is a sketch showing a projectile at 1289m/s and hitting a plate which is moving up at 217 

m/s. Projectile has a length of 76.7mm and a diameter of 7.67mm. Plate has a thickness of 6.4 mm, a 

width of 60mm and a length of 150mm.  The unit used is mm-g-s. 

 

 

 

 

 

 

 

Step 1: To construct a mesh spans (-107.5,-30,-15) to (107.5,30,15) with 215x60x30 elements.   

Step 2: Set up ALE multi-material Groups (AMMGs or ALE fluids).  There are totally 3 AMMGs 

defined.  First is “Rod” by *MAT_JOHNSON_COOK (MID=1) and *EOS_LINEAR_POLYNOMIAL 

(EOSID=1).  Next is “Vacuum” by *MAT_VACUUM (MID=3). The third is “Plate” by 

*MAT_JOHNSON_COOK (MID=2) and *EOS_LINEAR_POLYNOMIAL (EOSID=2). Their materials 

properties are given as follows. 

1289 m/s 
73.5° 



 

Now construct the ALE fluids by using *ALE_STRUCTURED_MULTI-MATERIAL_GROUP. 

 

Step 3: Volume Filling the initial S-ALE mesh. By *ALE_STRUCTRUED_MESH_VOLUME_FILLING. 

First, fill all with “vacuum”. 

 

Next, assign the inside of box (BOXID=1) to “plate”. 
 



 
Finally, assign the inside of a cylinder to “rod”. 

 

And the initial velocities of “plate” and “rod” are prescribed by using the following cards. 

 

That is all!  But before we could make it run, we need to add in some more control card and 

database cards.  We could use *CONTROL_ALE to make a choice of order of accuracy, 1st order 

(donor cell) or 2nd order (van Leer).   

 

The rest of fields should be left as blank most of the time, if not all.  They are used in generic ALE 

solvers but mostly ignored in S-ALE solvers with only a few exceptions. 

And other cards:  

 



Now run it with 16 core MPP executable. It will only take 39 seconds. Please note as not all S-ALE 

keywords are finalized until recently (Jan 2021), we need to use the latest DEV version of LS-

DYNA.  R12.1 version should be available in the first half of year 2021. 

Below is the projectile and plate at t=0., t=0.04ms and t=0.08ms.  The input deck is available at 

https://ftp.lstc.com/anonymous/outgoing/hao/sale/models_R121/cthrod.k 

   

 

Ending Remarks 

LS-DYNA ALE module has been known for its steep learning curve.  Partially it was because setting 

up Eulerian models are intrinsically different from Lagrange models.  But the design of ALE 

keyword cards, for sure, has caused quite a lot of confusions among our users, new and 

experienced.   

To prompt LS-DYNA ALE usages, Structured ALE solver introduced a new, user-friendly, 

streamlined three-step setup.  We hope this effort could help users, new or old, to perform their 

work more efficiently and smoothly.     
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